

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours							
Course Title	NON-CONVENTIONAL ENERGY SOURCES							
Type of Course	Minor (SET V: EN	Minor (SET V: ENERGY PHYSICS)						
Semester	I	I						
Academic Level	100 - 109							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week		per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic knowledge of	different for	ms of energy.					
Course	This course provi	des a com	prehensive	introduction	to various			
Summary	renewable energy re	sources with	a focus on	non-conventio	onal sources.			
	Students will exp	olore the p	orinciples, to	echnologies,	advantages,			
	disadvantages, and	practical ap	plications of	solar, wind,	geothermal,			
	ocean, and biomass	energy.						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Develop a foundational			Instructor-creat
	understanding of energy resources,			ed exams / Quiz
	focusing on non-conventional			
	sources such as solar energy, and	U	С	

	grasp key terms and concepts			
	including solar constant, radiation			
	measurements, collectors, and			
	practical applications of solar			
	power.			
CO2	Discover wind energy	Ap	P	Practical
	comprehensively, covering			Assignment /
	utilization, advantages,			Observation of
	disadvantages, environmental			Practical Skills
	impact, sources, conversion			
	principles, components, pros and			
	cons, wind-electric power plants,			
	economics, and operational			
	challenges of large generators.			
CO3	Gain insight into geothermal	Ap	P	Seminar
	energy, exploring Earth's interior			Presentation /
	structure, geothermal systems like			Group Tutorial
	hot springs and various resources,			Work
	and understanding the advantages,			
	disadvantages, and applications of			
	geothermal energy in comparison to			
	other forms.			
CO4	Explore ocean energy, focusing on	U	С	Instructor-creat
	tidal and wave energy,			ed exams /
	understanding tidal power plant			Home
	components, economic aspects,			Assignments
	OTEC working principles,			
	efficiency, types, and applications,			
	considering advantages and			
	disadvantages.			
CO5	Understand biomass with its	Ap	Р	Writing
	resources and conversion			assignments

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

	processes, explore biogas			
	applications and plants			
CO6	Study fuel cells, hydrogen energy,	Ap	Р	Seminar
	government schemes, and			Presentation
	subsidies, and conduct plant visits			/Viva Voce
	for performance analysis.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

Detailed Syllabus:

	Uni	Content	Hrs	Mar
Modul	t		(45	ks
e			+30)	(70)
I		SOLAR ENERGY	10	20
	1	Introduction to Energy Resources-Non Conventional Energy Sources-Renewable and Non-Renewable energy sources.	1	
	2	Measurement of Solar radiation, Principles of the conversion of solar energy into heat. Collection systems, Characteristic features of a collecting system,	2	
	3	Types of collectors, Flat - Plate collectors, Selective absorber coatings/surfaces, Advantages Disadvantages and applications of flat plate collectors.	2	
	4	Concentrating collectors (Performance analysis not needed) ,Solar air heaters and drying, solar cooking, solar furnaces,	2	
	5.	Solar greenhouses and global warming, solar power plants, Solar photovoltaic cells (no need of mathematical equations)	3	

 $^{\# \}text{ -} Factual \ Knowledge}(F) \ Conceptual \ Knowledge}(C) \ Procedural \ Knowledge}(P)$

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

	Sections 1.3, 1.4, 1.5, 2.2.1, 2.2.2, 2.3, 3.1.3 - 3.1.5, 3.2, 3.3.1 - 3.3.3. 3.4 - (excluding 3.4.11), 4.16, 4.17, 4.18, 4.19, 4.20, 4.21.4, Book 1									
II		Wind Energy	9	18						
	6	Introduction, Utilisation aspects of wind energy, Characteristics of wind,	2							
	7	Advantages and Disadvantages of wind energy, Environmental impact of wind energy, Sources/Origins of wind	2							
	8	Principle of wind energy conversion and wind power, Basic components of wind energy conversion system(WECS)	3							
	9	Advantages and Disadvantages of WECS, Wind-Electric Generating Power Plant	1							
	10	Problems in operating large wind power generators.	1							
	Secti	ons 5.1-5.6, 5.8, 5.10, 5.11, 5.20, 5.26, Book 1								
III	Geo Thermal Energy, Fuel Cells									
	11	Introduction to Geothermal energy, Important aspects of Geothermal Energy, Structure of Earth's interior, Geothermal system-Hot Spring structure,	2							
	12	Geothermal Resources -Hydrothermal, Geopressured	3							
	13	Geothermal Resources - Petro-thermal system, Magma Resources	3							
	14	Advantages and disadvantages of geothermal energy over other energy forms, application of geothermal energy	2							
	15	Fuel cells, Advantages, Disadvantages and applications of fuel cells,	3							
		Hydrogen energy, properties of hydrogen, Advantages of Hydrogen as a fuel.								

IV	Energy from Ocean and Biomass								
	16 Ocean Energy, Ocean Energy Sources, Tidal energy								
	17	Components of a Tidal Power Plant, Advantages and disadvantages of	2						
	tidal power, Economic aspects of tidal energy conversion,								
	Wave energy, Advantages and disadvantages, Factors affecting Wave energy								
	19 Ocean Thermal Energy Conversion (OTEC), Working principle of OTEC, Efficiency of OTEC, Closed cycle system, open cycle system,								
		Advantages, Disadvantages and applications of OTEC							
	20	Ocean Energy, Ocean Energy Sources, Tidal energy	2						
	21 Introduction to biomass, Biomass resources, Biomass conversion process and applications								
	22	Biogas, Biogas applications, biogas plants, Raw materials used in biogas plants, Main components of a biogas plant,	3						
	Section	ons 8.1, 8.2, 8.3.1, 8.3.8, 8.3.14, 8.4.1, 8.4.2, 8.4.3, 8.5.1, 8.5.3, 8.5.4,							
	8.5.5. Book	1,8.5.5.2, 8.5.5.5, 8.5.6, 6.1, 6.2, 6.5, 6.6.1,6.6.2, 6.7.1, 6.7.2, 6.7.3, 1							
V		PRACTICALS	30						
	Cond	uct any 5 experiments from the given list and 1 additional experiment,							
	decid	ed by the teacher-in-charge, related to the content of the course. The 6 th							
	experiment may also be selected from the given list.								
	Necessary theory of experiments can be given as Assignment/ Seminar.								
	1	Energy audit of home/institution							
		• Estimate the energy use, identify the areas where energy is							
		wasted and identify areas of improvement.							
	2	Study power output of solar cell.							

	<u> </u>	
	Plot the V-I characteristics of solar cell under dark and illuminated conditions and get the open circuit voltage and short circuit current.	
	Plot voltage-power graph and get the maximum output power point.	
	Optional: find the efficiency of the solar cell, if a standardized light source is available.	
	• ExpEYES may be used. Solar cell of voltage rating 3V and current rating of the order of 100mA is desirable for the study.	
	https://expeyes.in/experiments/electronics/diodeIV.html	
3	Study the characteristics of LDR.	
	Measure the dark resistance of LDR	
	• Place LDR at different distances from an electric lamp and measure its resistance. Plot light intensity(E $\alpha \frac{1}{r^2}$) vs LDR	
	resistance.	
	Optional: Construct a dark sensor using LDR and transistor. In order to turn on the LED in the desired light intensity, an adjustable resistor can be used in the circuit.	
4	Construction of the center tapped full wave rectifiers and regulated power supply.	
	Construct a center tapped full wave rectifier without filter and with a filter.	
	Measure the AC and DC voltages using a multimeter and calculate the ripple factor without and with a filter.	
	Observe the variation of the ripple factor with load resistance, when filter is used.	
	• Construct 5V/12V regulated power supply using 78XX IC.	
5	Black body spectrum of Sun -Estimation of surface temperature using the Tracker Video Analysis tool.	
	Calibrate the video of the solar spectra in the Tracker tool using two laser wavelengths/lines of mercury spectra.	
	Plot wavelength vs intensity, get	
	• λ_{max} and using Wein's law calculate the surface temperature.	
	Pre recorded video of the solar spectra can be used.	
	• https://physlets.org/tracker/.	
	• https://www.youtube.com/watch?v=UCCPkJpUQEw	
	<u> </u>	

6	Acceleration of a Freely Falling Body	
	• Use the smartphone acoustic stopwatch to determine the duration of a free fall.	
	• Measure the time of flight of a steel ball for different heights and plot a graph of distance vs. time squared (s vs. t^2). Determine g from the graph.	
	• Experiment 2 of Book 4.	
	 Phyphox app may be used. https://phyphox.org/experiment/free-fall-2/ 	
	OR	
	Use ExpEyes kit, electromagnet, and contact sensor to determine the duration of a free fall. https://expeyes.in/experiments/mechanics/tof.html	
7	Analysis of Bouncing Balls to Determine Gravitational Acceleration and Coefficient of Restitution.	
	• After doing the experiment, the student should be able to understand the concept of inelastic collision.	
	Measure the time interval between successive bounces using a digital acoustic stopwatch and hence calculate g and coefficient of restitution	
	• Experiment 12 of Book 4	
	 Phyphox app may be used. https://phyphox.org/experiment/inelastic-collision/ 	
8	The Nearly Parabolic Trajectories of a Bouncing Ball	
	Perform Experiment 7 using Tracker tool.	
	Track the ball and plot the time Vs position graph.	
	Measure the time interval between successive bounces and hence calculate g and coefficient of restitution.	
	• Experiment 12 of Book 4	
	• https://www.youtube.com/watch?v=ocLQFMMLIGw	
9	Analysis of Air Resistance and Terminal Speed to Determine the Drag Coefficient.	
	• Record the motion of a light weight paper cup and analyse it with Tracker tool (https://physlets.org/tracker/).	
	Plot acceleration, velocity, and position with time.	
	Repeat the experiment with different mass (by simply stacking the paper cups)	

	Determine the Drag Coefficient	
	• Experiment 27 of Book 4.	
	• https://www.youtube.com/watch?v=iujzK3uH1Yc	
10	Projectile Motion: Kinematics	
	 Analyse projectile motion as a combination of horizontal motion with constant velocity and vertical motion with constant acceleration. 	
	Drop two balls from a height, one from rest, and other simultaneously projected horizontally.	
	Analyse the motion of both in the Tracker tool.	
	• https://www.youtube.com/watch?v=zMF4CD7i3hg	
	• https://www.youtube.com/watch?v=Mi01anodoDE	
	• https://www.youtube.com/watch?v=510NLNthJGc	
11	Projectile Motion: Energy Conservation	
	 Analyse the motion of the tossing ball/ projectile in the Tracker tool. 	
	• Plot time Vs the x-and y-components of velocity and acceleration.	
	 Also plot the kinetic energy, potential energy (build data using define tool) and total energy. 	
	• https://www.youtube.com/watch?v=x0AWRLvgB28	
	• https://www.youtube.com/watch?v=i07HeUWo8xc	
12	Verification of Faraday's law and Lenz's law of electromagnetic induction	
	 Verify Faraday's law and Lenz's law by measuring the induced voltage across a coil subjected to the varying magnetic field. 	
	 Galvanometer/ExpEYES can be used to measure the induced emf. 	
	 In the third experiment, for better coupling between the coils, use a high permeability material like iron or ferrite core, and observe the change in the induced emf. 	
	• https://expeyes.in/experiments/school-level/mutual-induction.h tml	
	• Simulation: https://phet.colorado.edu/sims/html/faradays-law/latest/faradays-law_all.html	

13	Analysis of induced emf developed in a coil as a magnet dropping through it.	
	 Drop a neodymium magnet through a coil, guided through a vertical tube. 	
	 Repeat the experiment by dropping the magnet, through different heights from the coil and by changing the approaching pole. 	
	 Capture the induced emf as a function of time using ExpEYES, note the maximum value of the emf and verify Faraday's law and Lenz's law of induced emf and flux change. 	
	• https://expeyes.in/experiments/school-level/em-induction.html	
14	AC three phase generator.	
	 Rotate a neodymium magnet about an axis perpendicular to its dipole axis and fix three coils displaced equally from each other, i.e., 120° separated. 	
	 Analyze the induced emf developed in the coils using CRO/ExpEYES and the phase relationship between the three induced voltages. 	
	 Optional: Realize star connection (three phase four wire system) and verify the p.d. between the wires. 	
	• https://expeyes.in/experiments/school-level/ac-generator.html	

Books and References:

- 1. Non- Conventional Energy Sources and Utilisation by R.K.Rajput, S.Chand Publishers, 1st Edition (Book 1)
- 2. Nonconventional energy resources by G. D. Rai, Khanna publishers-2008 (Book 2)
- 3. Solar Energy by S. B. Sukhatme-Tata McGraw-Hill Publishing Company Ltd 1997 (Book 3)
- 4. Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 4)

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO	PO
	1	2	3		O5	6						6	7
CO 1	2	1	1	0	2	1	2	0	0	1	1	0	0
CO 2	2	1	1	0	2	1	2	0	0	1	1	0	0
CO 3	2	2	2	0	2	1	2	0	0	1	1	0	0